1-D velocity model for the North Korean Peninsula from Rayleigh wave dispersion of ambient noise cross-correlations

Author:

Lee Sang-Jun,Rhie JunkeeORCID,Kim Seongryong,Kang Tae-Seob,Cho Chang Soo

Abstract

AbstractMonitoring seismic activity in the north Korean Peninsula (NKP) is important not only for understanding the characteristics of tectonic earthquakes but also for monitoring anthropogenic seismic events. To more effectively investigate seismic properties, reliable seismic velocity models are essential. However, the seismic velocity structures of the region have not been well constrained due to a lack of available seismic data. This study presents 1-D velocity models for both the inland and offshore (western East Sea) of the NKP. We constrained the models based on the results of a Bayesian inversion process using Rayleigh wave dispersion data, which were measured from ambient noise cross-correlations between stations in the southern Korean Peninsula and northeast China. The proposed models were evaluated by performing full moment tensor inversion for the 2013 Democratic People’s Republic of Korea (DPRK) nuclear test. Using the composite model consisting of both inland and offshore models resulted in consistently higher goodness of fit to observed waveforms than previous models. This indicates that seismic monitoring can be improved by using the proposed models, which resolve propagation effects along different paths in the NKP region.

Funder

Korea Institute of Radiological and Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Korean infrasound catalogue (1999–2022);Geophysical Journal International;2024-08-06

2. Determination of Borehole Seismic Sensor Orientation Using Microseisms;Bulletin of the Seismological Society of America;2022-07-21

3. Terrain Proxy-Based Site Classification for Seismic Zonation in North Korea within a Geospatial Data-Driven Workflow;Remote Sensing;2021-05-09

4. Multiple Rayleigh waves guided by the planar surface of a continuously twisted structurally chiral material;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3