Using Artificial Intelligence to Estimate the Probability of Forest Fires in Heilongjiang, Northeast China

Author:

Wu Zechuan,Li Mingze,Wang Bin,Quan Ying,Liu Jianyang

Abstract

Although low-intensity forest fires are a necessary part of healthy echo system, high-intensity forest fires continue to affect the diversity of forest ecosystems and species. Therefore, it is necessary to study the driving factors of forest fires and explore their possible locations and probabilities in complex forest terrain. In this article, we determined the relative influences of different types of factors on the occurrence of forest fires in Heilongjiang forest areas and compared the performance of artificial neural networks and logistic regression for wildfire prediction. By analyzing Heilongjiang forest fire data from 2002 to 2015 and constructing a model, we found that climate factors, topographical factors, and vegetation type factors play a crucial role in Heilongjiang’s wildfires. During the fire prevention period, temperature and wind speed have a more significant influence than other factors. According to the variable screening that we conducted, the model built by the variables that we used can predict 84% of forest fires in Heilongjiang Province. For recent wildfires (2019–2020) in most areas, we can use artificial neural networks for relatively accurate verification (85.2%). Therefore, artificial neural networks are very suitable for the prediction of forest fires in Heilongjiang Province. Through the prediction results, we also created a probability distribution map of fire occurrence in the study area. On this basis, we also analyzed the changes in the probability of natural fires under the weather changing trend, which can effectively aid in fire prevention and extinguishment.

Funder

University of Science and Technology of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3