Quantify the Contribution of Dust and Anthropogenic Sources to Aerosols in North China by Lidar and Validated with CALIPSO

Author:

Wang ZhuangORCID,Liu Cheng,Hu Qihou,Dong Yunsheng,Liu Haoran,Xing Chengzhi,Tan Wei

Abstract

Persistent heavy haze episodes have repeatedly shrouded North China in recent years. Besides anthropogenic emissions, natural dust also contributes to the aerosols in this region. Through continuous observation by a dual-wavelength Raman lidar, the primary aerosol types and their contributions to air pollution in North China were determined. The following three aerosol types can be classified: natural dust, anthropogenic aerosols, and the mixture of anthropogenic aerosols and dust (polluted dust). The classification results are basically consistent with the classification results from the cloud–aerosol lidar and infrared pathfinder satellite observations (CALIPSO) satellite measurements. The relative bias of the lidar ratio between the Raman lidar and CALIPSO is less than 25% over 90% of the cases, indicating that the CALIPSO lidar ratio selection algorithm is reasonable. The classification results show that approximately 45% of aerosols below 1.8 km are contributed by polluted dust during our one year observations. The contribution of dust increased with height, from 6% at 500 m to 28% at 1,800 m, while the contribution of anthropogenic aerosols decreased from 49% to 25%. In addition, polluted dust is the major aerosol subtype below 1.0 km in spring (over 60%) and autumn (over 70%). Anthropogenic aerosols contribute more than 75% of air pollution in summer. In winter, anthropogenic aerosols prevailed (over 80%) in the lower layer, while polluted dust (around 60%) dominated the upper layer. Our results identified the primarily aerosol types to assess the contributions of anthropogenic and natural sources to air pollution in North China, and highlight that natural dust plays a crucial role in lower-layer air pollution in spring and autumn, while controlling anthropogenic aerosols will significantly improve air quality in winter.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Anhui Science and Technology Major Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3