The Sn2 Reaction: A Theoretical-Computational Analysis of a Simple and Very Interesting Mechanism

Author:

Capurso Matías,Gette Rodrigo,Radivoy Gabriel,Dorn VivianaORCID

Abstract

Bimolecular nucleophilic substitution (SN2) reaction is one of the most frequently processes chosen as model mechanism to introduce undergraduate chemistry students to computational chemistry methodology. In this work, we performed a computational analysis for the ionic SN2 reaction, where the nucleophile charged (X−; X=F, Cl, Br, I) attacks the carbon atom of the substrate (CH3Cl) through a backside pathway, and simultaneously, the leaving group is displaced (Cl−). The calculations were performed applying DFT methods with the Gaussian09 program, the B3LYP functional, the 6-31+G* basis set for all atoms except iodine (6-311G*), and the solvents effects (acetonitrile and cyclohexane) were evaluated with the PCM model. We evaluated the potential energy surface (PES) for the mentioned reaction considering the reactants, the formation of an initial complex between the nucleophile and the substrate, the transition state, a final complex where the leaving group is still bound to the substrate and the products. We analyzed the atomic charge (ESP) and the bond distance throughout the process. Gas phase and solvent studies were performed in order to analyze the solvation effects on the reactivity of the different nucleophiles. We observed that increasing solvent polarity, decreases reaction rates. On the other hand, we thought it would be enriching, to carry out a reactivity analysis from the point of view of molecular orbitals. Therefore, we analyzed the MOs HOMO and the MOs LUMO of the different stationary states on PES, both in a vacuum (gas phase) and in acetonitrile as the solvent.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3