Endogenous n-3 PUFAs Improve Non-Alcoholic Fatty Liver Disease through FFAR4-Mediated Gut–Liver Crosstalk

Author:

Jiang Xuan12,Yang Qin1,Qu Hongyan1,Chen Yongquan123ORCID,Zhu Shenglong13

Affiliation:

1. Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China

2. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

3. Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China

Abstract

The gut–liver axis plays a key role in the development and progression of non-alcoholic fatty liver disease (NAFLD). Due to the complexity and incomplete understanding of the cross-talk between the gut and liver, effective therapeutic targets are largely unknown. Free fatty acid receptors (FFARs) may bridge the cross-talk between the gut and liver. FFAR4 has received considerable attention due to its important role in lipid metabolism. However, the role of FFAR4 in this cross talk in NAFLD remains unclear. In this study, mice with high endogenous n-3 PUFAs but FFAR4 deficiency were generated by crossbreeding Fat-1 and FFAR4 knockout mice. FFAR4 deficiency blocked the protective effects of high endogenous n-3 PUFAs on intestinal barrier dysfunction and hepatic steatosis. In addition, FFAR4 deficiency decreased gut microbiota diversity and enriched Rikenella, Anaerotruncus, and Enterococcus, and reduced Dubosiella, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Coriobacteriaceae UCG-002, Faecalibaculum, Ruminococcaceae UCG-009, and Akkermansia. Notably, FFAR4 deficiency co-regulated pantothenic acid and CoA biosynthesis, β-alanine metabolism, and sphingolipid metabolism pathways in the gut and liver, potentially associated with the aggravation of NAFLD. Together, the beneficial effects of n-3 PUFAs on the gut and liver were mediated by FFAR4, providing insights on the role of FFAR4 in the treatment of NAFLD through the gut–liver axis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3