Bacillus amyloliquifaciens-Supplemented Camel Milk Suppresses Neuroinflammation of Autoimmune Encephalomyelitis in a Mouse Model by Regulating Inflammatory Markers

Author:

Ibrahim Hairul Islam Mohamed12ORCID,Sheikh Abdullah3,Khalil Hany Ezzat45ORCID,Khalifa Ashraf16ORCID

Affiliation:

1. Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia

2. Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Kottakuppam 605104, India

3. Camel Research Center, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia

4. Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia

5. Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt

6. Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt

Abstract

Multiple sclerosis (MS), a distinct autoimmune neuroinflammatory disorder, affects millions of people worldwide, including Saudi Arabia. Changes in the gut microbiome are linked to the development of neuroinflammation via mechanisms that are not fully understood. Prebiotics and probiotics in camel milk that has been fermented have a variety of health benefits. In this study, Bacillus amyloliquefaciens-supplemented camel milk (BASY) was used to assess its preventive effect on MS symptoms in a myelin oligodendrocyte glycoprotein (MOG)-immunized C57BL6J mice model. To this end, MOG-induced experimental autoimmune encephalomyelitis (EAE) was established and the level of disease index, pathological scores, and anti-inflammatory markers of BASY-treated mice using macroscopic and microscopic examinations, qPCR and immunoblot were investigated. The results demonstrate that BASY significantly reduced the EAE disease index, increased total microbial load (2.5 fold), and improved the levels of the short-chain fatty acids propionic, butyric and caproic acids in the diseased mice group. Additionally, myeloperoxidase (MPO) proinflammatory cytokines (IL-1β, IL-6, IL-17, TNF-α) and anti-inflammatory cytokines (TGF-β) were regulated by BASY treatment. Significant suppression of MPO and VCAM levels were noticed in the BASY-treated group (from 168 to 111 µM and from 34 to 27 pg/mL, respectively), in comparison to the EAE group. BASY treatment significantly reduced the expression of inflammatory cytokines, inflammatory progression related transcripts, and inflammatory progression protein markers. In conclusion, BASY significantly reduced the symptoms of EAE mice and may be used to develop a probiotic-based diet to promote host gut health. The cumulative findings of this study confirm the significant neuroprotection of BASY in the MOG-induced mice model. They could also suggest a novel approach to the treatment of MS-associated disorders.

Funder

King Salman Center for Disability Research

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3