Affiliation:
1. School of Science, Shanghai Institute of Technology, Shanghai 201418, China
2. National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract
With the advancement of semiconductor technology, chip cooling has become a major obstacle to enhancing the capabilities of power electronic systems. Traditional electronic packaging materials are no longer able to meet the heat dissipation requirements of high-performance chips. High thermal conductivity (TC), low coefficient of thermal expansion (CTE), good mechanical properties, and a rich foundation in microfabrication techniques are the fundamental requirements for the next generation of electronic packaging materials. Currently, metal matrix composites (MMCs) composed of high TC matrix metals and reinforcing phase materials have become the mainstream direction for the development and application of high-performance packaging materials. Silicon carbide (SiC) is the optimal choice for the reinforcing phase due to its high TC, low CTE, and high hardness. This paper reviews the research status of SiC-reinforced aluminum (Al) and copper (Cu) electronic packaging materials, along with the factors influencing their thermo-mechanical properties and improvement measures. Finally, the current research status and limitations of conventional manufacturing methods for SiC-reinforced MMCs are summarized, and an outlook on the future development trends of electronic packaging materials is provided.
Funder
Natural Science Foundation of China
Shanghai Youth Teacher Training Fund
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献