Relationship of Selected Soil Properties with the Micronutrients in Salt-Affected Soils

Author:

Mohiuddin MuhammadORCID,Irshad Muhammad,Sher Sadaf,Hayat FaisalORCID,Ashraf Ammar,Masood Salman,Bibi Sumera,Ali JawadORCID,Waseem Muhammad

Abstract

The present study aimed to assess the relationship of soil properties in salt-affected soils. The soil samples were collected from 14 districts of Pakistan. Soil salinity and sodicity are the common features of the arid and semiarid regions. The effects of the salt’s interactions with soil micronutrients have not been well studied. Therefore, saline and non-saline soil samples were collected from different locations. The microelements (Fe, Cu, Mn, and Zn) were fractionated into water-soluble, exchangeable, carbonate, Fe + Mn oxide, organic, and residual fractions. Univariate and multivariate analysis (PCA) was carried out to determine the linear relationship between soil properties and micronutrients fractions. Results showed that the magnitude of micronutrients appeared to be affected by the salinity in soils. In saline soil, the Fe fractions differed in the order of residual > organic bound > Fe + Mn bound > carbonate bound > exchangeable > water soluble. Iron fractions varied in the non-saline soils as residual > Fe + Mn bound > organic bound > exchangeable > carbonate bound > water soluble. Copper concentration was higher in the residual and carbonate forms, and the amount was lower in the exchangeable and water-soluble forms under both saline and non-saline conditions. The water-soluble Mn fraction was lower, and the residual Mn fraction was proportionately higher than other forms of Mn in soils. Zinc was found mostly in the residual fraction in both saline and non-saline soils. The mobility factor of micronutrients in non-saline soil was greater than in saline soil. PCA revealed that organic matter (OM) and pH directly affected the fractionation of Cu, Mn, Zn, and Fe in soil. Thus, it could be inferred that salts can bring changes to the composition of micronutrients depending on the nature of the soil and the magnitude of salts.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3