Author:
Huang Yun-Hsun,Lai Yan-Jiang,Wu Jung-Hua
Abstract
Land subsidence resulting from the overexploitation of groundwater is an important issue in the Choshui River Basin, Taiwan. In the current study, we employed system dynamics simulation in modeling the supply of surface and groundwater, as well as the demand for water by industry, water deficits, and mechanisms underlying land subsidence. The proposed model was then used to estimate the magnitude of land subsidence and evaluate various management strategies. Our simulation results revealed that the vigorous enforcement of well sealing would have a modest effect on land subsidence; however, it would also have notable adverse effects on the agricultural community. We determined that reducing the demand for irrigation water (e.g., by switching to less water-intensive crops) would reduce land subsidence, while preserving profitability in those areas. In the future, this policy could be complemented by promoting the adoption of advanced irrigation technology and automatic systems to further slow the excessive exploitation of groundwater, with a corresponding effect on land subsidence.
Funder
Ministry of Science and Technology, Taiwan, R.O.C.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献