A Literature Review on System Dynamics Modeling for Sustainable Management of Water Supply and Demand

Author:

Naeem Khawar1ORCID,Zghibi Adel12,Elomri Adel1ORCID,Mazzoni Annamaria3ORCID,Triki Chefi4ORCID

Affiliation:

1. College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar

2. Laboratory of Geological Resources and Environment, Department of Geology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia

3. Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar

4. Kent Business School, University of Kent, Canterbury CT2 7UL, UK

Abstract

Water supply and demand management (WSDM) is essential for developing sustainable cities and societies. WSDM is only effective when tackled from the perspective of a holistic system understanding that considers social, environmental, hydrological, and economic (SEHEc) sub-systems. System dynamics modeling (SDM) is recommended by water resource researchers as it models the biophysical and socio-economic systems simultaneously. This study presents a comprehensive literature review of SDM applications in sustainable WSDM. The reviewed articles were methodologically analyzed considering SEHEc sub-systems and the type of modeling approach used. This study revealed that problem conceptualization using the causal loop diagram (CLD) was performed in only 58% of the studies. Moreover, 70% of the reviewed articles used the stock flow diagram (SFD) to perform a quantitative system analysis. Furthermore, stakeholder engagement plays a significant role in understanding the core issues and divergent views and needs of users, but it was incorporated by only 36% of the studies. Although climate change significantly affects water management strategies, only 51% of the reviewed articles considered it. Although the scenario analysis is supported by simulation models, they further require the optimization models to yield optimal key parameter values. One noticeable finding is that only 12% of the articles used quantitative models to complement SDM for the decision-making process. The models included agent-based modeling (ABM), Bayesian networking (BN), analytical hierarchy approach (AHP), and simulation optimization multi-objective optimization (MOO). The solution approaches included the genetic algorithm (GA), particle swarm optimization (PSO), and the non-dominated sorting genetic algorithm (NSGA-II). The key findings for the sustainable development of water resources included the per capita water reduction, water conservation through public awareness campaigns, the use of treated wastewater, the adoption of efficient irrigation practices including drip irrigation, the cultivation of low-water-consuming crops in water-stressed regions, and regulations to control the overexploitation of groundwater. In conclusion, it is established that SDM is an effective tool for devising strategies that enable sustainable water supply and demand management.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3