Author:
Zhang Jingwei,Yang Zenan,Ding Kun,Feng Li,Hamelmann Frank,Chen Xihui,Liu Yongjie,Chen Ling
Abstract
Currently, the accuracy of modeling a photovoltaic (PV) array for fault diagnosis is still unsatisfactory due to the fact that the modeling accuracy is limited by the accuracy of extracted model parameters. In this paper, the modeling of a PV array based on multi-agent deep reinforcement learning (RL) using the residuals of I–V characteristics is proposed. The environment state based on the high dimensional residuals of I–V characteristics and the corresponding cooperative reward is presented for the RL agents. The actions of each agent considering the damping amplitude are designed. Then, the entire framework of modeling a PV array based on multi-agent deep RL is presented. The feasibility and accuracy of the proposed method are verified by the one-year measured data of a PV array. The experimental results show that the higher modeling accuracy of the next time step is obtained by the extracted model parameters using the proposed method, compared with that using the conventional meta-heuristic algorithms and the analytical method. The daily root mean square error (RMSE) is approximately 0.5015 A on the first day, and converges to 0.1448 A on the last day of training. The proposed multi-agent deep RL framework simplifies the design of states and rewards for extracting model parameters.
Funder
Changzhou Sci & Tech Program
Natural Science Foundation of Jiangsu Province
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献