Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study

Author:

Taghezouit Bilal,Harrou FouziORCID,Larbes CherifORCID,Sun Ying,Semaoui Smail,Arab Amar Hadj,Bouchakour SalimORCID

Abstract

The capacity of photovoltaic solar power installations has been boosted last years by reaching a new record with 175 GWdc of newly installed solar power in 2021. To guarantee reliable performances of photovoltaic (PV) plants and maintain target requirements, faults have to be reliably detected and diagnosed. A method for an effective and reliable fault diagnosis of PV plants based on the behavioral model and performance analysis under the LabVIEW environment is presented in this paper. Specifically, the first phase of this study consists of the behavioral modeling of the PV array and the inverter in order to estimate the electricity production and analyze the performance of the 9.54 kWp Grid Connected PV System (GCPVS). Here, the results obtained from the empirical models were validated and calibrated by experimental data. Furthermore, a user interface for modeling and analyzing the performance of a PV system under LabVIEW has been designed. The second phase of this work is dedicated to the design of a simple and efficient diagnostic tool in order to detect and recognize faults occurring in the PV systems. Essentially, the residuals obtained using the parametric models are analyzed via the performance loss rates (PLR) of four electrical indicators (i.e., DC voltage, DC current, DC power, and AC power). To evaluate the proposed method, numerous environmental anomalies and electrical faults affecting the GCPVS were taken into account. Results demonstrated the satisfactory prediction performance of the considered empirical models to predict the considered variables, including DC current, DC power, and AC power with an R2 of 0.99. Moreover, the obtained results show that the detection and recognition of faults were successfully achieved.

Funder

Centre de Développement des Energies Renouvelables (CDER), Direction Générale de la Recherche Scientifique et du Développement Technologique

King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference73 articles.

1. Renewable Capacity Statistics 2022, 2022.

2. Renewables 2022 Global Status Report. 2022.

3. Gaëtan, M., Izumi, K., Trends in Photovoltaic Applications 2022. 2022.

4. Gantner Instruments Monitoring and Control of Utility Scale Photovoltaic Systems; Germany. 2022.

5. Shimshon, R., and Green, M. IEA-PVPS. The Use of Advanced Algorithms in PV Failure Monitoring, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3