Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review

Author:

Sarbu IoanORCID,Mirza Matei,Muntean Daniel

Abstract

This article presents a complex and exhaustive review of the integration of renewable energy sources (RES) (specifically solar, geothermal, and hydraulic energies and heat pumps (HPs)) and the improvement of water pumping in district heating systems (DHSs) focused on low-temperature systems, to increase energy efficiency and environmental protection. For this aim, the main components of a DHS and the primary RES with applications in DHSs were described briefly. Finally, several case studies regarding the DHS in Timisoara, Romania, were analysed. Thus, by integrating water source HP (WSHP) systems in cooperation with solar thermal and photovoltaic (PV) collectors and reducing the supply temperature from 110 °C to 30 °C in DHS, which supplies the water radiators to consumers in a district of this city in a 58/40 °C regime of temperatures and produces domestic hot water (DHW) required by consumers at 52 °C, a thermal energy saving of 75%, a reduction in heat losses on the transmission network of 90% and a diminution of CO2 emissions of 77% were obtained. Installed PV panels generate 1160 MWh/year of electricity that is utilised to balance the electricity consumption of HP systems. Additionally, mounting pumps as turbines (PATs) for the recovery of excess hydraulic energy in the entire heating network resulted in electricity production of 378 MW, and the variable frequency drive’s (VFD) method for speed control for a heating station pump resulted in roughly 38% more energy savings than the throttle control valve technique.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference127 articles.

1. The capability to reduce primary energy demand in EU housing

2. Energy Technology Perspectives 2016;IEA,2016

3. European actions to improve energy efficiency of buildings;Allard;REHVA J.,2008

4. Directive 2010/31/EU on the Energy Performance of Buildings;EP,2010

5. A review of modelling and optimisation techniques for district heating systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3