Heat flow analysis and description of the cooperation of the heat exchange station with heat exchange substations located in apartments

Author:

Taler Dawid1,Sobota Tomasz1,Taler Jan2,Kania Agata3,Wiśniewski Robert3

Affiliation:

1. Department of Thermal Processes, Air Protection and Waste Utilization, Cracow University of Technology, ul. Warszawska 24, Cracow 31-155, Poland

2. Department of Energy, Cracow University of Technology, al. Jana Pawla I 37, Cracow 31-864, Poland

3. MPEC S.A. in Cracow, Al. Pokoju 81, 31-564 Cracow, Poland

Abstract

This paper presents an analysis of the heat flow in a plate heat exchanger located at a building heat exchange station. The plate heat exchanger is the main source of heat for the building system based on microsubstations in the building apartments. The co-operation of the heat exchange station with the substations in the apartments is also described. Such microstations are intended for both domestic hot water preparation and apartment heating. The method of calculating the product of the heat transfer coefficient k and the heat exchange surface area A is presented. In order to verify the correctness of the measured values of the temperatures of hot and cold water at the heat exchange station inlet and outlet, they were compared to the values calculated using the -NTU method. Good agreement was found between the results of the calculations and the meas-urements. Recommendations were made for the temperature of return water to the heating station. The cost of operating the district heating network could be reduced by increasing the surface area of central heating radiators in apartments, so that the temperature of return water to the heating station could be lowered.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3