The Importance of Initial Seedling Characteristics in Controlling Allocation to Growth and Reserves under Different Soil Moisture Conditions

Author:

Landhäusser Simon M.1,Wiley Erin T.2,Solarik Kevin A.3,Kulbaba Shaun P.1,Goeppel Alexander E.1

Affiliation:

1. Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada

2. Department of Biology, University of Central Arkansas, Conway, AR 72035, USA

3. National Council for Air and Stream Improvement, Inc. (NCASI), 2000 McGill College Avenue, Montreal, QC H3A 3H3, Canada

Abstract

After disturbance, forest regeneration and resiliency depend on the ability of seedlings to respond, survive, and grow under a variety of stress conditions, including drought. Despite recent efforts to improve our fundamental knowledge surrounding plant response mechanisms to stress and their application in seedling quality research, initial seedling characteristics are often ignored when exploring seedling responses to stress in field plantings or ecophysiological studies. Here, we explore how initial differences in size, biomass allocation, and non-structural carbohydrate (NSC) storage affect the subsequent partitioning of new biomass, growth potential, and drought response in seedlings of a deciduous broad-leaved (Populus tremuloides) and an evergreen coniferous species (Pinus banksiana). We exposed seedlings of both species to different growing conditions in their first growing season in order to manipulate the aforementioned seedling characteristics. In a second growing season, we exposed these different seedling types to a subsequent drought stress. While drought reduced both structural growth and NSC storage in all seedling types, the expected shift in allocation favoring roots was only observed in seedling types with initially low root:shoot or root:stem ratios. Overall, we also found that the traits associated with greater growth were quite different between pine and aspen. While larger seedlings led to greater growth in pine, it was the smallest seedling type in aspen with the largest root:stem ratio that produced the most new growth. In aspen, this smaller seedling type was the only one that did not undergo a shift in biomass relative to its initial allometry, suggesting that adjustments in biomass allocation made by other, larger seedling types must have come at the cost of lower growth. In contrast, adjustments in allocation did not appear to negatively impact pine, possibly because reduced root:shoot ratios of larger seedlings did not reduce NSC storage, as it did in aspen. Our results highlight (1) the complexity of how differences in biomass allocation and changes in seedling size may alter storage and the response of species to drought, and (2) the importance of accounting for initial seedling characteristics (both morphological and physiological) when predicting seedling growth and the impacts of environmental stressors.

Funder

Natural Sciences and Engineering Research Council of Canada

Syncrude Canada Ltd.

Suncor Energy

Capital Power Corporation

Shell Canada

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3