PharmFrag: An Easy and Fast Multiplex Pharmacogenetics Assay to Simultaneously Analyze 9 Genetic Polymorphisms Involved in Response Variability of Anticancer Drugs

Author:

Bouvet Régis,Verdier Marie-Clémence,El Baroudi Yahya,Galibert Marie-Dominique,David Véronique,Schutz Sacha,Tron Camille

Abstract

Regarding several cytotoxic agents, it was evidenced that genetic polymorphisms in genes encoding enzymes involved in their metabolism are associated with higher risk of toxicity. Genotyping these genes before treatment is a valuable strategy to prevent side effects and to predict individual response to drug therapy. This pharmacogenetic approach is recommended for chemotherapies such as thiopurines (azathioprine, 6-mercaptopurine, thioguanine), irinotecan, and fluoropyrimidines (capecitabine and 5-fluorouracil). In this study, we aimed at developing and validating a fast, cost-effective, and easily implementable multiplex genotyping method suitable for analyzing a panel of nine variants involved in the pharmacogenetics of widely prescribed anticancer drugs. We designed a multiplex-specific PCR assay where fragments were labeled by two different fluorescent dye markers (HEX/FAM) identifiable by fragment analysis. These two labels were used to discriminate bi-allelic variants, while the size of the fragment allowed the identification of a particular polymorphism location. Variants of interest were TPMT (rs1800462, rs1142345, rs1800460), NUDT15 (rs116855232), DPYD (rs55886062, rs3918290, rs67376798, rs75017182), and UGT1A1 (rs8175347). The assay was repeatable, and genotypes could be determined when DNA sample amounts ranged from 25 to 100 ng. Primers and dye remained stable in a ready-to-use mixture solution after five freeze–thaw cycles. Accuracy was evidenced by the consistency of 187 genotyping results obtained with our multiplex assay and a reference method. The developed method is fast and cost-effective in simultaneously identifying nine variants involved in the pharmacological response of anticancer drugs. This assay can be easily implemented in laboratories for widespread access to pharmacogenetics in clinical practice.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3