A Comparison of Photoelastic and Finite Elements Analysis in Internal Connection and Bone Level Dental Implants

Author:

Herráez-Galindo Cristina,Torres-Lagares DanielORCID,Martínez-González Álvaro-José,Pérez-Velasco Andrea,Torres-Carranza Eusebio,Serrera-Figallo María-Angeles,Gutiérrez-Pérez José-Luis

Abstract

This study is a contribution to our understanding of the mechanical behaviour of dental implants through the use of the finite element and the photoelastic methods. Two internal connection and bone level dental implants with different design have been analysed (M-12 by Oxtein S.L., Zaragoza, Spain, and ASTRA, from Dentsply Sirona, Charlotte, NC, USA), evaluating the stress distribution produced by axial stresses and a comparison has been established between them, as well as between the two methods used, in order to validate the adopted hypotheses and correlate the numerical modelling performed with experimental tests. To load the implant in laboratory testing, a column was placed, such that the loading point was about 9.3 mm from the upper free surface of the resin plate. This column connects the implant with the weights used to define the test load. In turn, support for both plates was achieved by two 6 mm bolts 130 mm apart and located on a parallel line with the resin (flush with the maximum level of the implant), at a depth of 90 mm. The results obtained with both methods used were similar enough. The comparison of results is fundamentally visual, but ensures that, at least in the range of forces used, both methods are similar. Therefore, the photoelastic method can be used to confirm in a real way the virtual conditions of the finite element models, with the implications in the investigation of dental implants that this entails.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3