Photoelasticity for Stress Concentration Analysis in Dentistry and Medicine

Author:

Marín-Miranda Miriam,Wintergerst Ana María,Moreno-Vargas Yoshamin Abnoba,Juárez-López María Lilia Adriana,Tavera-Ruiz Cesar

Abstract

Complex stresses are created or applied as part of medical and dental treatments, which are linked to the achievement of treatment goals and favorable prognosis. Photoelasticity is an optical technique that can help observe and understand biomechanics, which is essential for planning, evaluation and treatment in health professions. The objective of this project was to review the existing information on the use of photoelasticity in medicine and dentistry and determine their purpose, the areas or treatments for which it was used, models used as well as to identify areas of opportunity for the application of the technique and the generation of new models. A literature review was carried out to identify publications in dentistry and medicine in which photoelasticity was used as an experimental method. The databases used were: Sciencedirect, PubMed, Scopus, Ovid, Springer, EBSCO, Wiley, Lilacs, Medigraphic Artemisa and SciELO. Duplicate and incomplete articles were eliminated, obtaining 84 articles published between 2000 and 2019 for analysis. In dentistry, ten subdisciplines were found in which photoelasticity was used; those related to implants for fixed prostheses were the most abundant. In medicine, orthopedic research predominates; and its application is not limited to hard tissues. No reports were found on the use of photoelastic models as a teaching aid in either medicine or dentistry. Photoelasticity has been widely used in the context of research where it has limitations due to the characteristics of the results provided by the technique, there is no evidence of use in the health area to exploit its application in learning biomechanics; on the other hand there is little development in models that faithfully represent the anatomy and characteristics of the different tissues of the human body, which opens the opportunity to take up the qualitative results offered by the technique to transpolate it to an application and clinical learning.

Publisher

MDPI AG

Subject

General Materials Science

Reference120 articles.

1. Biomechanics in Clinical Orthodontics;Nanda,1998

2. Peterson's Stress Concentration Factors

3. Biomecánica Craneofacial;De la Macorra,2001

4. Oclusión Traumática;Herrera-Félix;Ph.D. Thesis,2020

5. Design and construction of a transducer for bite force registration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3