Development of Nanobainitic Microstructures in Carbo-Austempered Cast Steels: Heat Treatment, Microstructure and Properties

Author:

Ríos-Diez OscarORCID,Aristizábal-Sierra Ricardo,Serna-Giraldo ClaudiaORCID,Jimenez Jose A.,Garcia-Mateo CarlosORCID

Abstract

Carburizing implies the existence of a carbon gradient from the surface to the core of the steel, which in turn will affect both the critical temperature for austenite formation and the kinetics of the bainitic transformation during the austempering treatment. Therefore, for future development of carbo-austempered steels with nanobainitic microstructures in the case, it is key to understand the effect of such carbon gradient has on the final microstructure and the mechanical properties reached by the heat treatments used. This work was divided into two parts, firstly two alloys with similar carbon content to those at the surface and center of the carburized steel were used to establish the optimal heat treatment parameters and to study bainite transformation kinetics by high resolution dilatometry. In a second step, a carburized alloy is produced and subjected to the designed heat treatments, in order to evaluate the microstructure and mechanical properties developed. Results thus obtained are compared with those obtained in the same carburized alloy after following the most common quench and temper treatment.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference29 articles.

1. The mechanism of bainite formation in steels

2. Bainite in Steels. Transformations, Microstructure and Properties;Bhadeshia,2015

3. Understanding the mechanical properties of nanostructured bainite;Garcia-Mateo,2015

4. Retained austenite: Stability in a nanostructured bainitic steel;Caballero,2016

5. Carbo-Austempering™ - A New Wrinkle?

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3