Wear Mechanisms of the Working Surface of Gears after Scuffing Tests

Author:

Osuch-Słomka Edyta1ORCID,Michalczewski Remigiusz1ORCID,Mańkowska-Snopczyńska Anita1,Kalbarczyk Marek1,Wieczorek Andrzej N.2ORCID,Skołek Emilia3ORCID

Affiliation:

1. Tribology Centre, Łukasiewicz Research Network-Institute for Sustainable Technologies (Ł-ITEE), ul. Pulaskiego 6/10, 26-600 Radom, Poland

2. Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, ul. Akademicka 2, 44-100 Gliwice, Poland

3. Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland

Abstract

Identification of changes occurring on the working surface of lubricated gears using analytical equipment, e.g., an FE-SEM scanning electron microscope with an EDS microanalyzer, a WLI interferometric microscope, or a GDEOS optical discharge spectrometer, enables the characterisation of wear mechanisms of this surface. Definition of the phenomena occurring on the surface of tribo-couples after scuffing tests enables a comparative analysis of scuffing resistance and surface properties of the micro- and nanostructure, and elemental composition of the tested gears. Recognition and analysis of the wear mechanisms occurring on the working surface of gears will reduce the risk of damage and losses resulting from the need for maintenance and repair. The study concerned the working surfaces of gears made of 17HNM and 35HGSA steels on which a W-DLC/CrN coating was deposited. Shell Omala S4 GX 320 commercial industrial oil with a synthetic PAO (polyalphaolefin) base was selected for the lubrication of the gears. Tribological tests employed an FZG gear scuffing under severe conditions test method and they were carried out on a T-12U test rig for cylindrical gear analysis.

Funder

National Centre for Research and Development, Poland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3