Secondary Recrystallization Behavior in Fe-3%Si Grain-oriented Silicon Steel Produced by Twin-roll Casting and Simplified Secondary Annealing

Author:

Wang YangORCID,Zhang Yuanxiang,Fang Feng,Lu Xiang,Yuan Guo,Wang Guodong

Abstract

Grain-oriented silicon steels were produced by the shortest processing route involving twin-roll strip casting, two-stage cold rolling with intermediate annealing, and simulated continuous annealing. The secondary recrystallization behavior of grain-oriented silicon steels under different inhibition conditions was in-situ observed by combining the confocal laser scanning microscopy (CLSM) and electron backscattered diffraction (EBSD) techniques. The results revealed that the optimal temperature of secondary recrystallization showed a proportional relationship with the Zenner pinning force. In the case of weak pinning force, the abnormal grain growth occurred quickly at ~1050 °C. The corresponding growth rates were in the range of 60–1400 μm/min and decreased gradually as the secondary recrystallization proceeded. In the case of strong pinning force, the incubation time and onset temperature of the secondary recrystallization was significantly increased, but the total time of the secondary recrystallization was obviously shortened from 685 s to 479 s, and the final magnetic induction of B8 was increased from 1.7 T to 1.85 T. After the secondary annealing, some island grains and coarse primary grains were retained. The formation of island grain was related to the low migration of grain boundaries. The findings of coarse γ- grains indicated that the primary grain size also played a crucial role during secondary recrystallization, apart from the primary recrystallized texture, which attracted more attention previously.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3