The Effect of Rare Earth Y on the Inhibitor Precipitation Behavior of Strip‐Cast Grain‐Oriented Silicon Steel

Author:

Wang Shun1ORCID,Wang Yang1ORCID,Zhang Yuanxiang1,Fang Feng1,Zhang Erliang1,Zhang Xiaoming1,Yuan Guo1ORCID

Affiliation:

1. State Key Laboratory of Rolling and Automation Northeastern University Shenyang 110819 China

Abstract

0.3 mm‐thick grain‐oriented silicon steel sheets with varying Y contents are produced via twin‐roll strip‐casting and two‐stage cold rolling process. This study primarily investigates the evolution of microstructure, texture, and precipitation along the processing. Specifically, the effect of rare earth Y on second‐phase particle precipitation in ultralow carbon grain‐oriented silicon steel is examined. Results indicate that higher Y content will consume beneficial inhibitor elements such as S and N, leading to the formation of coarse rare earth inclusions (≈10 μm) in the cast strip. This significantly diminishes inhibition ability and magnetic induction (B8 = 1.58 T≈1.71 T). On the contrary, the addition of trace Y can accelerate the precipitation of inhibitors. During the intermediate annealing stage, steel with trace Y exhibits a significant enhancement in precipitate distribution density (from 2.8 μm−2 to 13.6 μm−2), and the final magnetic induction B8 increases from 1.86 T to 1.91 T compared to steel without Y. In addition, the results of first‐principle calculations based on density functional theory reveal that the doped Y atom prefers to segregate at the Al–N interface, and the interface energy reduces from 1.871 J m−2 to 1.024 J m−2, thereby promoting the precipitation of AlN.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Fundamental Research Funds for Central Universities of the Central South University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3