Abstract
In this work, a plant trial was conducted on an industrial low pressure die casting (LPDC) manufacturing process for the production of aluminum alloy wheels. Various types of data have been acquired, including extensive measurements of temperature at different locations (die, wheel and cooling channels), pressure in cooling channels and size/location of shrinkage porosity in the produced wheels. Moreover, two process conditions were tested in the trial—one was the standard production process condition and the other was designed to generate shrinkage porosity in wheels by altering the die temperature. The large amount of quantitative data acquired in this study helped us to understand the key transport phenomena occurring in the process, which include: (1) a thorough picture of the evolution in temperature at a large number of discrete locations in the die and the casting; (2) the dynamic and complicated heat transfer in the cooling channels both water-on and water-off stages, associated with boiling water heat transfer. This paper (Part I) presents the results and findings obtained from the process characterization. The follow-on paper (Part II) will introduce the developed modeling methodology based on the data produced from this work.
Subject
General Materials Science,Metals and Alloys
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献