Development of the Low-Pressure Die Casting Process for an Aluminium Alloy Part

Author:

Monteiro Filipe1,Soares Gonçalo1ORCID,Madureira Rui1ORCID,Silva Rui Pedro1ORCID,Silva José1ORCID,Amaral Rui1ORCID,Neto Rui12,Reis Ana12ORCID,Esteves António3

Affiliation:

1. INEGI—Institute of Science and Innovation in Mechanical and Industrial Engineering, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

2. Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

3. FAB–Fundição de Alumínios de Braga, Parque Industrial Sobreposta, Lugar da Alagoa, Este (São Pedro e São Mamede), 4715-533 Braga, Portugal

Abstract

The low-pressure die casting (LPDC) process was experimentally and numerically studied to produce AlSi7Mg0.3 components such as steering knuckles. Steering knuckles are important safety components in the context of a vehicle’s suspension system, serving as the mechanical interface that facilitates the articulation of the steering to control the front wheel’s orientation, while simultaneously bearing the vertical load imposed by the vehicle’s weight. This work focuses on the development of a numerical model in ProCAST®, replicating the production of the aforementioned part. The model analyses parameters such as the filling dynamics, solidification process, and presence of shrinkage porosities. For the purpose of evaluating the quality of the castings, six parts were produced and characterised, both mechanically (tensile and hardness tests) and microstructurally (porosity and optical microscopy analysis). When correlating simulation results with the available experimental data, it is possible to conclude that the usage of the LPDC process is a viable alternative to the use of steels and other metals for the production of very high-quality castings while using lighter alloys such as aluminium and magnesium in more demanding applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3