Development of a Multihole Atmospheric Plasma Jet for Growth Rate Enhancement of Broccoli Seeds

Author:

Srakaew Khattiya,Chingsungnoen ArtitORCID,Sutthisa Waraporn,Lakhonchai Anthika,Poolcharuansin PhitsanuORCID,Chunpeng Poramate,Rojviriya Catleya,Thumanu Kanjana,Tunmee Sarayut

Abstract

This work aims to develop a multihole atmospheric pressure plasma jet (APPJ) device to increase the plasma area and apply it to a continuous seed treatment system. Broccoli seed was used to study the effects of an atmospheric pressure plasma jet on seed germination and growth rate. An argon flow rate of 4.2 lpm, a plasma power of 412 W, and discharge frequency of 76 kHz were used for seed treatment. The contact angle decreased strongly with the increase in treatment time from 20 s to 80 s. The broccoli seed’s outer surface morphology seemed to have been slightly modified to a smoother surface by the plasma treatment during the treatment time of 80 s. However, the cross-sectional images resulted from Synchrotron radiation X-ray tomographic microscopy (SRXTM) confirmed no significant difference between seeds untreated and treated by plasma for 80 s. This result indicates that plasma does not affect the bulk characteristics of the seed but does provide delicate changes to the top thin layer on the seed surface. After seven days of cultivation, the seed treated by plasma for 30 s achieved the highest germination and yield.

Funder

Electricity Generating Authority of Thailand

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3