A review of low-temperature plasma-assisted machining: from mechanism to application

Author:

Liu Jiyu,Li Yuheng,Chen Yang,Zhou Yuyang,Wang Shuaishuai,Yuan Zizhen,Jin Zhuji,Liu Xin

Abstract

AbstractMaterials with high hardness, strength or plasticity have been widely used in the fields of aviation, aerospace, and military, among others. However, the poor machinability of these materials leads to large cutting forces, high cutting temperatures, serious tool wear, and chip adhesion, which affect machining quality. Low-temperature plasma contains a variety of active particles and can effectively adjust material properties, including hardness, strength, ductility, and wettability, significantly improving material machinability. In this paper, we first discuss the mechanisms and applications of low-temperature plasma-assisted machining. After introducing the characteristics, classifications, and action mechanisms of the low-temperature plasma, we describe the effects of the low-temperature plasma on different machining processes of various difficult-to-cut materials. The low-temperature plasma can be classified as hot plasma and cold plasma according to the different equilibrium states. Hot plasma improves material machinability via the thermal softening effect induced by the high temperature, whereas the main mechanisms of the cold plasma can be summarized as chemical reactions to reduce material hardness, the hydrophilization effect to improve surface wettability, and the Rehbinder effect to promote fracture. In addition, hybrid machining methods combining the merits of the low-temperature plasma and other energy fields like ultrasonic vibration, liquid nitrogen, and minimum quantity lubrication are also described and analyzed. Finally, the promising development trends of low-temperature plasma-assisted machining are presented, which include more precise control of the heat-affected zone in hot plasma-assisted machining, cold plasma-assisted polishing of metal materials, and further investigations on the reaction mechanisms between the cold plasma and other materials.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3