How Can Physiological Computing Benefit Human-Robot Interaction?

Author:

Roy Raphaëlle N.,Drougard Nicolas,Gateau Thibault,Dehais Frédéric,Chanel Caroline P. C.ORCID

Abstract

As systems grow more automatized, the human operator is all too often overlooked. Although human-robot interaction (HRI) can be quite demanding in terms of cognitive resources, the mental states (MS) of the operators are not yet taken into account by existing systems. As humans are no providential agents, this lack can lead to hazardous situations. The growing number of neurophysiology and machine learning tools now allows for efficient operators’ MS monitoring. Sending feedback on MS in a closed-loop solution is therefore at hand. Involving a consistent automated planning technique to handle such a process could be a significant asset. This perspective article was meant to provide the reader with a synthesis of the significant literature with a view to implementing systems that adapt to the operator’s MS to improve human-robot operations’ safety and performance. First of all, the need for this approach is detailed regarding remote operation, an example of HRI. Then, several MS identified as crucial for this type of HRI are defined, along with relevant electrophysiological markers. A focus is made on prime degraded MS linked to time-on-task and task demands, as well as collateral MS linked to system outputs (i.e., feedback and alarms). Lastly, the principle of symbiotic HRI is detailed and one solution is proposed to include the operator state vector into the system using a mixed-initiative decisional framework to drive such an interaction.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3