Robots as Mental Health Coaches: A Study of Emotional Responses to Technology-Assisted Stress Management Tasks Using Physiological Signals

Author:

Klęczek Katarzyna1,Rice Andra2,Alimardani Maryam3ORCID

Affiliation:

1. Faculty of Humanities, AGH University of Science and Technology, 30-059 Kraków, Poland

2. Department of Computer Science, College of Science, Utah State University, Logan, UT 84322, USA

3. Departement of Computer Science, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

Abstract

The current study investigated the effectiveness of social robots in facilitating stress management interventions for university students by evaluating their physiological responses. We collected electroencephalogram (EEG) brain activity and Galvanic Skin Responses (GSRs) together with self-reported questionnaires from two groups of students who practiced a deep breathing exercise either with a social robot or a laptop. From GSR signals, we obtained the change in participants’ arousal level throughout the intervention, and from the EEG signals, we extracted the change in their emotional valence using the neurometric of Frontal Alpha Asymmetry (FAA). While subjective perceptions of stress and user experience did not differ significantly between the two groups, the physiological signals revealed differences in their emotional responses as evaluated by the arousal–valence model. The Laptop group tended to show a decrease in arousal level which, in some cases, was accompanied by negative valence indicative of boredom or lack of interest. On the other hand, the Robot group displayed two patterns; some demonstrated a decrease in arousal with positive valence indicative of calmness and relaxation, and others showed an increase in arousal together with positive valence interpreted as excitement. These findings provide interesting insights into the impact of social robots as mental well-being coaches on students’ emotions particularly in the presence of the novelty effect. Additionally, they provide evidence for the efficacy of physiological signals as an objective and reliable measure of user experience in HRI settings.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3