Parallel Manipulation Based on Stick-Slip Motion of Vibrating Platform

Author:

Mayyas MohammadORCID

Abstract

The majority of the industrial material handling mechanisms used in the manipulation or assembly of mesoscale objects are slow and require precision programming and tooling, mainly because they are based on sequential robotic pick-n-place operations. This paper presents problem formation, modeling, and analysis of a sensorless parallel manipulation technique for mimicking real-systems that transfer mesoscale objects based on the vibration of inline-feeder machines. Unlike common stick-slip models that utilize a “mass-on-moving-belt” and avoid totality of the motion, the research obtains differential equations in order to describe the combined physics of stick-slip dynamics of an object traveling along an oscillating platform under smooth and dry friction conditions. The nonlinear dynamics are solved numerically to explain the effect of system parameters on the stick-slip motion. The research provides empirical models based on frequency-analysis identification to describe the total linear speed of an object to an input force. The results are illustrated and tested by time–response, phase plots, and amplitude response diagrams, which compare very favorably with results obtained by numerical simulation of the equation of motion, and this suggests that the vibration of the platform is independent of stick-slip motion when the mass of the object being transported is small relative to the mass of the system.

Funder

Ohio Department of Education

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference59 articles.

1. Nonlinear dynamics of engineering systems;Knudsen;Phil. Trans. R. Soc. Lond. A,1992

2. Nonlinear Oscillations;Hasan,1979

3. Nonlinear Oscillations;Nayfeh,2008

4. Applied asymptotic methods in nonlinear oscillations;Mitropolskii,1997

5. Approximately analytical procedure to evaluate random stick-slip vibration of Duffing system including dry friction

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3