Affiliation:
1. Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China
2. Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract
Simulation platforms are critical and indispensable tools for application developments of unmanned aerial vehicles (UAVs) because the UAVs are generally costly, have certain requirements for the test environment, and need professional licensed operators. Thus, developers prefer (or have) to test their applications on simulation platforms before implementing them on real machines. In the past decades, a considerable number of simulation platforms for robots have been developed, which brings convenience to developers, but also makes them hard to choose a proper one as they are not always familiar with all the features of platforms. To alleviate this dilemma, this paper provides a survey of open-source simulation platforms and employs the simulation of a multi-copter UAV swarm as an example. The survey covers seven widely used simulators, including Webots, Gazebo, CoppeliaSim, ARGoS, MRDS, MORSE, and USARSim. The paper outlines the requirements for multi-copter UAV swarms and shows how to select an appropriate platform. Additionally, the paper presents a case study of a UAV swarm based on Webots. This research will be beneficial to researchers, developers, educators, and engineers who seek suitable simulation platforms for application development, (not only multi-copter UAV swarms but also other types of robots), which further helps them to save expenses for testing, and speed up development progress.
Funder
Fundamental Research Funds for the Central Universities
Research on 3D path planning for low-speed miniature UAV swarms
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. State-of-the-Art and Future Research Challenges in UAV Swarms;IEEE Internet of Things Journal;2024-06-01
2. Smart Home Simulation in CoppeliaSim Using C# Through WebSocket;International Journal of Applied Engineering and Management Letters;2023-06-24