FloorVLoc: A Modular Approach to Floorplan Monocular Localization

Author:

Noonan John,Rivlin Ehud,Rotstein Hector

Abstract

Intelligent vehicles for search and rescue, whose mission is assisting emergency personnel by visually exploring an unfamiliar building, require accurate localization. With GPS not available, and approaches relying on new infrastructure installation, artificial landmarks, or pre-constructed dense 3D maps not feasible, the question is whether there is an approach which can combine ubiquitous prior map information with a monocular camera for accurate positioning. Enter FloorVLoc—Floorplan Vision Vehicle Localization. We provide a means to integrate a monocular camera with a floorplan in a unified and modular fashion so that any monocular visual Simultaneous Localization and Mapping (SLAM) system can be seamlessly incorporated for global positioning. Using a floorplan is especially beneficial since walls are geometrically stable, the memory footprint is low, and prior map information is kept at a minimum. Furthermore, our theoretical analysis of the visual features associated with the walls shows how drift is corrected. To see this approach in action, we developed two full global positioning systems based on the core methodology introduced, operating in both Monte Carlo Localization and linear optimization frameworks. Experimental evaluation of the systems in simulation and a challenging real-world environment demonstrates that FloorVLoc performs with an average error of 0.06 m across 80 m in real-time.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Real-Time Localization in Prior Indoor Maps Using Semantic SLAM;2023 9th International Conference on Automation, Robotics and Applications (ICARA);2023-02-10

2. NeuralPlan: Neural floorplan radiance fields for accelerated view synthesis;Image and Vision Computing;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3