From Single 2D Depth Image to Gripper 6D Pose Estimation: A Fast and Robust Algorithm for Grabbing Objects in Cluttered Scenes

Author:

Jabalameli Amirhossein,Behal AmanORCID

Abstract

In this paper, we investigate the problem of grasping previously unseen objects in unstructured environments which are cluttered with multiple objects. Object geometry, reachability, and force-closure analysis are considered to address this problem. A framework is proposed for grasping unknown objects by localizing contact regions on the contours formed by a set of depth edges generated from a single-view 2D depth image. Specifically, contact regions are determined based on edge geometric features derived from analysis of the depth map data. Finally, the performance of the approach is successfully validated by applying it to scenes with both single and multiple objects, in both simulation and experiments. Using sequential processing in MATLAB running on a 4th-generation Intel Core Desktop, simulation results with the benchmark Object Segmentation Database show that the algorithm takes 281 ms on average to generate the 6D robot pose needed to attach with a pair of viable grasping edges that satisfy reachability and force-closure conditions. Experimental results in the Assistive Robotics Laboratory at UCF using a Kinect One sensor and a Baxter manipulator outfitted with a standard parallel gripper showcase the feasibility of the approach in grasping previously unseen objects from uncontrived multi-object settings.

Funder

National Science Foundation

National Institute for Disability, Independent Living, and Rehabilitation Research

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3