Abstract
A slip-aware localization framework is proposed for mobile robots experiencing wheel slip in dynamic environments. The framework fuses infrastructure-aided visual tracking data (via fisheye lenses) and proprioceptive sensory data from a skid-steer mobile robot to enhance accuracy and reduce variance of the estimated states. The slip-aware localization framework includes: the visual thread to detect and track the robot in the stereo image through computationally efficient 3D point cloud generation using a region of interest; and the ego motion thread which uses a slip-aware odometry mechanism to estimate the robot pose utilizing a motion model considering wheel slip. Covariance intersection is used to fuse the pose prediction (using proprioceptive data) and the visual thread, such that the updated estimate remains consistent. As confirmed by experiments on a skid-steer mobile robot, the designed localization framework addresses state estimation challenges for indoor/outdoor autonomous mobile robots which experience high-slip, uneven torque distribution at each wheel (by the motion planner), or occlusion when observed by an infrastructure-mounted camera. The proposed system is real-time capable and scalable to multiple robots and multiple environmental cameras.
Funder
Natural Sciences and Engineering Research Council
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献