Learning to Execute Timed-Temporal-Logic Navigation Tasks under Input Constraints in Obstacle-Cluttered Environments

Author:

Tolis Fotios C.1ORCID,Trakas Panagiotis S.1ORCID,Blounas Taxiarchis-Foivos1ORCID,Verginis Christos K.2,Bechlioulis Charalampos P.13ORCID

Affiliation:

1. Division of Signals and Control Systems, Department of Electrical and Computer Engineering, University of Patras, Rio, 26504 Patras, Greece

2. Division of Signals and Systems, Department of Electrical Engineering, Uppsala University, 752 37 Uppsala, Sweden

3. Athena Research Center, Robotics Institute, Artemidos 6 & Epidavrou, 15125 Marousi, Greece

Abstract

This study focuses on addressing the problem of motion planning within workspaces cluttered with obstacles while considering temporal and input constraints. These specifications can encapsulate intricate high-level objectives involving both temporal and spatial constraints. The existing literature lacks the ability to fulfill time specifications while simultaneously managing input-saturation constraints. The proposed approach introduces a hybrid three-component control algorithm designed to learn the safe execution of a high-level specification expressed as a timed temporal logic formula across predefined regions of interest in the workspace. The first component encompasses a motion controller enabling secure navigation within the minimum allowable time interval dictated by input constraints, facilitating the abstraction of the robot’s motion as a timed transition system between regions of interest. The second component utilizes formal verification and convex optimization techniques to derive an optimal high-level timed plan over the mentioned transition system, ensuring adherence to the agent’s specification. However, the necessary navigation times and associated costs among regions are initially unknown. Consequently, the algorithm’s third component iteratively adjusts the transition system and computes new plans as the agent navigates, acquiring updated information about required time intervals and associated navigation costs. The effectiveness of the proposed scheme is demonstrated through both simulation and experimental studies.

Funder

Hellenic Foundation for Research and Innovation

Applied Research for Autonomous Robotic Systems

European Union—NextGenerationEU

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3