Efficient Closed-Form Task Space Manipulability for a 7-DOF Serial Robot

Author:

Huber Gerold,Wollherr Dirk

Abstract

With the increasing demand for robots to react and adapt to unforeseen events, it is essential that a robot preserves agility at all times. While manipulability is a common measure to quantify agility at a given joint configuration, an efficient direct evaluation in task space is usually not possible with conventional methods, especially for redundant robots with an infinite number of Inverse Kinematic solutions. Yet, this is essential for global online optimization of a robot posture. In this work, we derive analytical expressions for a conventional 7-degrees of freedom (7-DOF) serial robot structure, which enable the direct evaluation of manipulability from a reduced task space parametrization. The resulting expressions allow array operation and thus achieve very high computational efficiency with vector-optimized programming languages. This direct and simultaneous calculation of the task space manipulability for large numbers of poses benefits many optimization problems in robotic applications. We show applications in global optimization of robot mounting poses, as well as redundancy resolution with global online optimization w.r.t. manipulability.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3