Non-Prehensile Manipulation Actions and Visual 6D Pose Estimation for Fruit Grasping Based on Tactile Sensing

Author:

Costanzo Marco1ORCID,De Simone Marco1,Federico Sara1,Natale Ciro1ORCID

Affiliation:

1. Dipartimento di Ingegneria, Università degli Studi della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy

Abstract

Robotic manipulation in cluttered environments is one of the challenges roboticists are currently facing. When the objects to handle are delicate fresh fruits, grasping is even more challenging. Detecting and localizing fruits with the accuracy necessary to grasp them is very difficult due to the large variability in the aspect and dimensions of each item. This paper proposes a solution that exploits a state-of-the-art neural network and a novel enhanced 6D pose estimation method that integrates the depth map with the neural network output. Even with an accurate localization, grasping fruits with a suitable force to avoid slippage and damage at the same time is another challenge. This work solves this issue by resorting to a grasp controller based on tactile sensing. Depending on the specific application scenario, grasping a fruit might be impossible without colliding with other objects or other fruits. Therefore, a non-prehensile manipulation action is here proposed to push items hindering the grasp of a detected fruit. The pushing from an initial location to a target one is performed by a model predictive controller taking into account the unavoidable delay in the perception and computing pipeline of the robotic system. Experiments with real fresh fruits demonstrate that the overall proposed approach allows a robot to successfully grasp apples in various situations.

Funder

European Commission

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3