Deep Reinforcement Learning for Autonomous Dynamic Skid Steer Vehicle Trajectory Tracking

Author:

Srikonda Sandeep,Norris William RobertORCID,Nottage Dustin,Soylemezoglu Ahmet

Abstract

Designing controllers for skid-steered wheeled robots is complex due to the interaction of the tires with the ground and wheel slip due to the skid-steer driving mechanism, leading to nonlinear dynamics. Due to the recent success of reinforcement learning algorithms for mobile robot control, the Deep Deterministic Policy Gradients (DDPG) was successfully implemented and an algorithm was designed for continuous control problems. The complex dynamics of the vehicle model were dealt with and the advantages of deep neural networks were leveraged for their generalizability. Reinforcement learning was used to gather information and train the agent in an unsupervised manner. The performance of the trained policy on the six degrees of freedom dynamic model simulation was demonstrated with ground force interactions. The system met the requirement to stay within the distance of half the vehicle width from reference paths.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction of Autonomous Vehicle Trajectory Tracking System Under Artificial Intelligence Technology;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

2. A Survey of Machine Learning Approaches for Mobile Robot Control;Robotics;2024-01-09

3. Autonomous Vehicle Image Classification using Deep Learning;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

4. Prediction and Experimental Study of Tire Slip Rate Based on Chassis Sinkage Amount;Agriculture;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3