Abstract
This paper presents a novel trajectory planning approach for nonlinear dynamical systems; a multi-rotor drone, built on an optimization-based framework proposed by the authors named the Nonlinear Model Predictive Horizon. In the present work, this method is integrated with a Backstepping Control technique. The goal is to remove the non-convexity of the optimization problem in order to provide real-time computation of reference trajectories for the vehicle which respects its dynamics while avoiding sensed static and dynamic obstacles in the environment. Our method is applied to two models of multi-rotor drones to demonstrate its flexibility. Several simulation and hardware flight experiments are presented to validate the proposed design and demonstrate its performance improvement over earlier work.
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献