Automating Component-Level Stress Measurements for Inverter Reliability Estimation

Author:

Flicker JackORCID,Johnson JayORCID,Hacke Peter,Thiagarajan RamanathanORCID

Abstract

In the near future, grid operators are expected to regularly use advanced distributed energy resource (DER) functions, defined in IEEE 1547-2018, to perform a range of grid-support operations. Many of these functions adjust the active and reactive power of the device through commanded or autonomous operating modes which induce new stresses on the power electronics components. In this work, an experimental and theoretical framework is introduced which couples laboratory-measured component stress with advanced inverter functionality and derives a reduction in useful lifetime based on an applicable reliability model. Multiple DER devices were instrumented to calculate the additional component stress under multiple reactive power setpoints to estimate associated DER lifetime reductions. A clear increase in switch loss was demonstrated as a function of irradiance level and power factor. This is replicated in the system-level efficiency measurements, although magnitudes were different—suggesting other loss mechanisms exist. Using an approximate Arrhenius thermal model for the switches, the experimental data indicate a lifetime reduction of 1.5% when operating the inverter at 0.85 PF—compared to unity PF—assuming the DER failure mechanism thermally driven within the H-bridge. If other failure mechanisms are discovered for a set of power electronics devices, this testing and calculation framework can easily be tailored to those failure mechanisms.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference25 articles.

1. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces,2018

2. A Comparison of DER Voltage Regulation Technologies Using Real-Time Simulations

3. Stability and control of power systems with high penetrations of inverter-based resources: An accessible review of current knowledge and open questions

4. PV inverter with decoupled active and reactive power control to mitigate grid faults

5. Smart inverter volt/var control functions for high penetration of PV on distribution systems;Smith;Proceedings of the 2011 IEEE/PES Power Systems Conference and Exposition,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3