Fast Quasi-Static Time-Series Simulation for Accurate PV Inverter Semiconductor Fatigue Analysis with a Long-Term Solar Profile

Author:

Liu YuntingORCID,Tolbert Leon M.,Kritprajun Paychuda,Dong Jiaojiao,Zhu Lin,Ollis Thomas BenORCID,Schneider Kevin P.,Prabakar KumaraguruORCID

Abstract

Power system simulations with long-term data typically have large time steps, varying from one second to a few minutes. However, for PV inverter semiconductors in grid-connected applications, the minimum thermal stress cycle occurs over the fundamental grid frequency (50 or 60 Hz). This requires the time step of the fatigue simulation to be approximately 100 μs. This small time step requires long computation times to process yearly power production profiles. In this paper, we propose a fast fatigue simulation for inverter semiconductors using the quasi-static time-series simulation concept. The proposed simulation calculates the steady state of the semiconductor junction temperature using a fast Fourier transform. The small thermal cycling during a switching period and even over the fundamental waveform is disregarded to further accelerate the simulation speed. The resulting time step of the fatigue simulation is 15 min, which is consistent with the solar dataset. The error of the proposed simulation is 0.16% compared to the fatigue simulation results using the complete thermal stress profile. The error of the proposed method is significantly less than the conventional averaged thermal profile. A PV inverter that responds to a transactive energy system is simulated to demonstrate the use of the proposed fatigue simulation. The proposed simulation has the potential to cosimulate with system-level simulation tools that also adopt the quasi-static time-series concept.

Funder

U.S. Department of Energy Grid Modernization Laboratory Consortium

National Science Foundation and the Department of Energy

CURENT Industry Partnership Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3