A Flow Sensor-Based Suction-Index Control Strategy for Rotary Left Ventricular Assist Devices

Author:

Liang Lixue,Qin KairongORCID,El-Baz Ayman S.ORCID,Roussel Thomas J.,Sethu PalaniappanORCID,Giridharan Guruprasad A.,Wang YuORCID

Abstract

Rotary left ventricular assist devices (LVAD) have emerged as a long-term treatment option for patients with advanced heart failure. LVADs need to maintain sufficient physiological perfusion while avoiding left ventricular myocardial damage due to suction at the LVAD inlet. To achieve these objectives, a control algorithm that utilizes a calculated suction index from measured pump flow (SIMPF) is proposed. This algorithm maintained a reference, user-defined SIMPF value, and was evaluated using an in silico model of the human circulatory system coupled to an axial or mixed flow LVAD with 5–10% uniformly distributed measurement noise added to flow sensors. Efficacy of the SIMPF algorithm was compared to a constant pump speed control strategy currently used clinically, and control algorithms proposed in the literature including differential pump speed control, left ventricular end-diastolic pressure control, mean aortic pressure control, and differential pressure control during (1) rest and exercise states; (2) rapid, eight-fold augmentation of pulmonary vascular resistance for (1); and (3) rapid change in physiologic states between rest and exercise. Maintaining SIMPF simultaneously provided sufficient physiological perfusion and avoided ventricular suction. Performance of the SIMPF algorithm was superior to the compared control strategies for both types of LVAD, demonstrating pump independence of the SIMPF algorithm.

Funder

LiaoNing Revitalization Talent Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3