Ferromagnetism in Defected TMD (MoX2, X = S, Se) Monolayer and Its Sustainability under O2, O3, and H2O Gas Exposure: DFT Study

Author:

Devi Anjna12,Dhiman Neha2,Kumar Narender234ORCID,Alfalasi Wadha34,Kumar Arun2,Ahluwalia P. K.1,Singh Amarjeet1,Tit Nacir34ORCID

Affiliation:

1. Department of Physics, Himachal Pradesh University, Shimla 171005, India

2. Department of Physics, Swami Vivekanand Government College, Shimla-Kangra Rd, Ghumarwin 174021, India

3. Department of Physics, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates

4. National Water and Energy Center, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates

Abstract

Spin-polarized density-functional theory (DFT) has been employed to study the effects of atmospheric gases on the electronic and magnetic properties of a defective transition-metal dichalcogenide (TMD) monolayer, MoX2 with X = S or Se. This study focuses on three single vacancies: (i) molybdenum “VMo”; (ii) chalcogenide “VX”; and (iii) di-chalcogenide “VX2”. Five different samples of sizes ranging from 4 × 4 to 8 × 8 primitive cells (PCs) were considered in order to assess the effect of vacancy–vacancy interaction. The results showed that all defected samples were paramagnetic semiconductors, except in the case of VMo in MoSe2, which yielded a magnetic moment of 3.99 μB that was independent of the sample size. Moreover, the samples of MoSe2 with VMo and sizes of 4 × 4 and 5 × 5 PCs exhibited half-metallicity, where the spin-up state becomes conductive and is predominantly composed of dxy and dz2 orbital mixing attributed to Mo atoms located in the neighborhood of VMo. The requirement for the establishment of half-metallicity is confirmed to be the provision of ferromagnetic-coupling (FMC) interactions between localized magnetic moments (such as VMo). The critical distance for the existence of FMC is estimated to be dc≅ 16 Å, which allows small sample sizes in MoSe2 to exhibit half-metallicity while the FMC represents the ground state. The adsorption of atmospheric gases (H2O, O2, O3) can drastically change the electronic and magnetic properties, for instance, it can demolish the half-metallicity characteristics. Hence, the maintenance of half-metallicity requires keeping the samples isolated from the atmosphere. We benchmarked our theoretical results with the available data in the literature throughout our study. The conditions that govern the appearance/disappearance of half-metallicity are of great relevance for spintronic device applications.

Funder

National Water and Energy Center at the UAE University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3