Simultaneous Analysis of 53 Pesticides in Safflower (Carthamus tinctorius L.) by Using LC–MS/MS Coupled with a Modified QuEChERS Technique

Author:

Song Wei12ORCID,Peng Chuanyi23,Liu Yuxin12,Han Fang12,Zhu Haitao12,Zhou Dianbing12,Wang Yu12,Chen Lijun12,Meng Xiaodi12,Hou Ruyan23ORCID

Affiliation:

1. Technical Center for Hefei Customs, Hefei 230022, China

2. Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Technical Center for Hefei Customs, Hefei 230022, China

3. Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China

Abstract

Objective: An optimized quick, easy, cheap, effective, rugged, and safe (QuEChERS) technique was investigated and compared with the conventional QuEChERS technique for the simultaneous analysis of fifty-three pesticide residues in safflower using ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). Method: Graphitic carbon nitride (g-C3N4) consisting of a major amount of carbon and nitrogen with a large surface area was used as a QuEChERS adsorbent instead of graphitized carbon black (GCB) for safflower extraction purification. Validation experiments were performed using spiked pesticide samples, and real samples were analyzed. Results: The linearity of the modified QuEChERS technique was evaluated with high coefficients of determination (R-2) being higher than 0.99. The limits of detection were <10 μg/kg. The spiked recoveries ranged from 70.4% to 97.6% with a relative standard deviation of less than 10.0%. The fifty-three pesticides exhibited negligible matrix effects (<20%). Thiamethoxam, acetamiprid, metolachlor, and difenoconazole were detected in real samples using an established method. Conclusion: This work provides a new g-C3N4-based modified QuEChERS technique for multi-pesticide residue analysis in complex food matrices.

Funder

Science and Technology Project of General Administration of Customs of the People’s Republic of China

Anhui Provincial Important Science & Technology Specific Projects

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3