Enzymatic Assessment of the State of Oil-Contaminated Soils in the South of Russia after Bioremediation

Author:

Minnikova Tatyana1ORCID,Kolesnikov Sergey1,Revina Sofia1,Ruseva Anna1,Gaivoronsky Vladimir2

Affiliation:

1. Department of Ecology and Nature Management, Academy of Biology and Biotechnology by D.I. Ivanovsky, Southern Federal University, Stachki Ave., 194/1, Rostov Region, 344090 Rostov-on-Don, Russia

2. Academy of Physical Culture and Sports, Department of Theoretical Foundations of Physical Education, Southern Federal University, St. Zorge, 5, Rostov Region, 344015 Rostov-on-Don, Russia

Abstract

Soil pollution with oil as a result of accidents at oil pipelines and oil refineries is a frequent occurrence in the south of Russia. To restore such polluted lands, it is necessary to carry out soil remediation measures. This work aimed to evaluate the use of ameliorants of various natures (biochar, sodium humate, and microbial preparation Baikal EM-1) to restore the ecological state of oil-contaminated soils with different properties (Haplic Chernozem, Haplic Arenosols, Haplic Cambisols). To assess the ecological state of soils, the following physicochemical and biological indicators were studied: residual oil content, redox potential, and medium reaction (pH). Changes in enzymatic activity were also studied, including catalase, dehydrogenases, invertase, urease, and phosphatase. The greatest decomposition of oil in Haplic Chernozem and Haplic Cambisols was provided by Baikal EM-1 (56 and 26%), and in Haplic Arenosols, this was provided by biochar (94%) and sodium humate (93%). In oil-contaminated Haplic Cambisols, the content of easily soluble salts with the addition of biochar and Baikal EM-1 increased by 83 and 58%, respectively. The introduction of biochar caused an increase in pH from 5.3 (Haplic Cambisols) to 8.2 (Haplic Arenosols). The introduction of oil-contaminated Haplic Arenosols of biochar, humate, and Baikal stimulated the activity of catalase and dehydrogenases by 52–245%. The activity of invertase was stimulated in the Haplic Chernozem after the introduction of ameliorants by 15–50%. The activity of urease was stimulated after the introduction of ameliorants into borax and Arenosol by 15–250%. The most effective ameliorant for restoring the ecological state of Haplic Cambisols after oil pollution was biochar. For Haplic Arenosols, this was sodium humate, and for Haplic Chernozem, the effectiveness of biochar and sodium humate did not differ. The most informative indicator for the remediation of Haplic Chernozem and Haplic Cambisols was the activity of dehydrogenases, and for Haplic Arenosols, this was the activity of phosphatase. The results of the study should be used to biomonitor the ecological state of oil-contaminated soils after bioremediation.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3