The Potential for Restoring the Activity of Oxidoreductases and Hydrolases in Soil Contaminated with Petroleum Products Using Perlite and Dolomite

Author:

Wyszkowska Jadwiga1ORCID,Borowik Agata1ORCID,Zaborowska Magdalena1ORCID,Kucharski Jan1ORCID

Affiliation:

1. Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland

Abstract

The research focused on assessing the response of oxidoreductases (dehydrogenases and catalase) and hydrolases (urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and β-glucosidase) to diesel oil (DO) and gasoline (G) contamination of soils subjected to phytoremediation with Zea mays. The activity of enzymes constitutes one of the fundamental mechanisms for the removal of contaminants from soil, which have the potential to contaminate not only the soil but also groundwater and water reservoirs. Additionally, correlations between enzyme activity and the basic physicochemical properties of the soil were determined. The interaction of perlite and dolomite with soil enzymes and the cultivated plant was also tested. The study was carried out in a pot experiment, where soil contaminated with DO or G was artificially treated at doses of 0, 8 cm3, and 16 cm3 kg−1. Perlite and dolomite were applied for remediation at doses of 0 and 10 g kg−1 of soil. Zea mays was found to respond to the tested pollutant with a reduction in biomass. DO affected the growth of this plant more than G. DO reduced the yield of aerial parts by 86% and G by 74%. The negative effects of these pollutants on the growth and development of Zea mays were mitigated by both perlite and dolomite. DO exerted greater pressure than G on the activity of oxidoreductases and hydrolases, as well as on the physicochemical properties of the soil. DO enhanced the activity of oxidoreductases and most hydrolases, whereas G inhibited them. The implementation of dolomite intensified the activity of all enzymes, except AcP (acid phosphatase) and Glu (ß-glucosidase), in soil contaminated with DO and G, and also improved its physicochemical properties. Perlite induced less significant effects than dolomite on soil enzymes and the physicochemical properties of the soil.

Funder

University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Department of Soil Science and Microbiology

Minister of Education and Science

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3