Simultaneous Quantification of 16 Bisphenol Analogues in Food Matrices

Author:

Lucarini Fiorella12,Gasco Rocco3,Staedler Davide1ORCID

Affiliation:

1. Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland

2. School of Engineering and Architecture, Institute of Chemical Technology, University of Applied Sciences and Arts of Western Switzerland, 1700 Fribourg, Switzerland

3. Department for Environmental and Aquatic Sciences, University of Geneva, 1211 Geneva, Switzerland

Abstract

Exposure to bisphenol analogues can occur in several ways throughout the food production chain, with their presence at higher concentrations representing a risk to human health. This study aimed to develop effective analytical methods to simultaneously quantify BPA and fifteen bisphenol analogues (i.e., bisphenol AF, bisphenol AP, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol P, bisphenol PH, bisphenol S, bisphenol Z, bisphenol TMC, and tetramethyl bisphenol F) present in canned foods and beverages. Samples of foods and beverages available in the Swiss and EU markets (n = 22), including canned pineapples, ravioli, and beer, were prepared and analyzed using QuEChERS GC-MS. The quantification method was compared to a QuEChERS LC-MS/MS analysis. This allowed for the selective and efficient simultaneous quantitative analysis of bisphenol analogues. Quantities of these analogues were present in 20 of the 22 samples tested, with the most frequent analytes at higher concentrations: BPA and BPS were discovered in 78% and 48% of cases, respectively. The study demonstrates the robustness of QuEChERS GC-MS for determining low quantities of bisphenol analogues in canned foods. However, further studies are necessary to achieve full knowledge of the extent of bisphenol contamination in the food production chain and its associated toxicity.

Funder

Department of Biomedical Sciences

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3