Using Sweet Sorghum Varieties for the Phytoremediation of Petroleum-Contaminated Salinized Soil: A Preliminary Study Based on Pot Experiments

Author:

Ma Di12,Xu Jie3,Zhou Jipeng1,Ren Lili1,Li Jian1,Zhang Zaiwang1,Xia Jiangbao1,Xie Huicheng2,Wu Tao1

Affiliation:

1. Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, China

2. College of Forestry, Shandong Agricultural University, Taian 271018, China

3. Department of Bioengineering, Binzhou Vocational College, Binzhou 256600, China

Abstract

Using energy plants to repair salinized soils polluted by petroleum is an efficient way to solve the problem of farmland reduction and prevent pollutants from entering the food chain simultaneously. In this study, pot experiments were conducted for the purposes of preliminarily discussing the potential of using an energy plant, sweet sorghum (Sorghum bicolor (L.) Moench), to repair petroleum-polluted salinized soils and obtain associated varieties with excellent remediation performance. The emergence rate, plant height and biomass of different varieties were measured to explore the performance of plants under petroleum pollution, and the removal of petroleum hydrocarbons in soil with candidate varieties was also studied. The results showed that the emergence rate of 24 of the 28 varieties were not reduced by the addition of 1.0 × 104 mg/kg petroleum in soils with a salinity of 0.31%. After a 40-day treatment in salinized soil with petroleum additions of 1.0 × 104 mg/kg, 4 potential well-performed varieties including Zhong Ketian No. 438, Ke Tian No. 24, Ke Tian No. 21 (KT21) and Ke Tian No. 6 with a plant height of >40 cm and dry weight of >4 g were screened. Obvious removal of petroleum hydrocarbons in the salinized soils planted with the four varieties were observed. Compared with the treatment without plants, the residual petroleum hydrocarbon concentrations in soils planted with KT21 decreased by 69.3%, 46.3%, 56.5%, 50.9% and 41.4%, for the additions of 0, 0.5 × 104, 1.0 × 104, 1.5 × 104 and 2.0 × 104 mg/kg, respectively. In general, KT21 had the best performance and application potential to remediate petroleum-polluted salinized soil.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shandong Province

Science and Technology Support Plan for Youth Innovation of Colleges and Universities in Shandong Province

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3