Simulation and Characterization of Nanoplastic Dissolution under Different Food Consumption Scenarios

Author:

Wang Ying12,Wang Zhongtang2,Lu Xin2,Zhang Hongyan2ORCID,Jia Zhenzhen2

Affiliation:

1. College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China

2. Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, China

Abstract

Understanding of the potential leaching of plastic particles, particularly nanoplastics (NPs), from food packaging is crucial in assessing the safety of the packaging materials. Therefore, the objective of this study was to investigate potential exposure risks by simulating the release of NPs from various plastic packaging materials, including polypropylene (PP), general casting polypropylene (GCPP) or metalized casting polypropylene (MCPP), polyethylene (PE), polyethylene terephthalate (PET), and polyphenylene sulfone (PPSU), under corresponding food consumption scenarios. Surface-enhanced Raman scattering (SERS) and scanning electron microscopy (SEM) were utilized to identify and characterize the NPs leached from plastic packaging. The presence of separated NPs was observed in PP groups subjected to 100 °C hot water, GCPP plastic sterilized at a high temperature (121 °C), and PE plastic soaked in 100 °C hot water, exhibited a distorted morphology and susceptibility to aggregation. The findings suggest that the frequent consumption of takeaway food, hot beverages served in disposable paper cups, and foods packaged with GCPP materials may elevate the risk of ingestion of NPs. This reminds us that food packaging can serve as an important avenue for human exposure to NPs, and the results can offer valuable insights for food safety management and the development of food packaging materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3