Globular Flower-Like Reduced Graphene Oxide Design for Enhancing Thermally Conductive Properties of Silicone-Based Spherical Alumina Composites

Author:

Liang WeijieORCID,Li Tiehu,Zhou Xiaocong,Ge Xin,Chen XunjunORCID,Lin Zehua,Pang Xiaoyan,Ge JianfangORCID

Abstract

The enhancement of thermally conductive performances for lightweight thermal interface materials is a long-term effort. The superb micro-structures of the thermal conductivity enhancer have an important impact on increasing thermal conductivity and decreasing thermal resistance. Here, globular flower-like reduced graphene oxide (GFRGO) is designed by the self-assembly of reduced graphene oxide (RGO) sheets, under the assistance of a binder via the spray-assisted method for silicone-based spherical alumina (S-Al2O3) composites. When the total filler content is fixed at 84 wt%, silicone-based S-Al2O3 composites with 1 wt% of GFRGO exhibit a much more significant increase in thermal conductivity, reduction in thermal resistance and reinforcement in thermal management capability than that of without graphene. Meanwhile, GFRGO is obviously superior to that of their RGO counterparts. Compared with RGO sheets, GFRGO spheres which are well-distributed between the S-Al2O3 fillers and well-dispersed in the matrix can build three-dimensional and isotropic thermally conductive networks more effectively with S-Al2O3 in the matrix, and this minimizes the thermal boundary resistance among components, owning to its structural characteristics. As with RGO, the introduction of GFRGO is helpful when decreasing the density of silicone-based S-Al2O3 composites. These attractive results suggest that the strategy opens new opportunities for fabricating practical, high-performance and light-weight filler-type thermal interface materials.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3