Development of Fractalkine-Targeted Nanofibers that Localize to Sites of Arterial Injury

Author:

Kassam Hussein A.,Gillis David C.,Dandurand Brooke R.ORCID,Karver Mark R.ORCID,Tsihlis Nick D.ORCID,Stupp Samuel I.,Kibbe Melina R.

Abstract

Atherosclerosis is the leading cause of death and disability around the world, with current treatments limited by neointimal hyperplasia. Our goal was to synthesize, characterize, and evaluate an injectable, targeted nanomaterial that will specifically bind to the site of arterial injury. Our target protein is fractalkine, a chemokine involved in both neointimal hyperplasia and atherosclerosis. We showed increased fractalkine staining in rat carotid arteries 24 h following arterial injury and in the aorta of low-density lipoprotein receptor knockout (LDLR-/-) mice fed a high-fat diet for 16 weeks. Three peptide amphiphiles (PAs) were synthesized: fractalkine-targeted, scrambled, and a backbone PA. PAs were ≥90% pure on liquid chromatography/mass spectrometry (LCMS) and showed nanofiber formation on transmission electron microscopy (TEM). Rats systemically injected with fractalkine-targeted nanofibers 24 h after carotid artery balloon injury exhibited a 4.2-fold increase in fluorescence in the injured artery compared to the scrambled nanofiber (p < 0.001). No localization was observed in the non-injured artery or with the backbone nanofiber. Fluorescence of the fractalkine-targeted nanofiber increased in a dose dependent manner and was observed for up to 48 h. These data demonstrate the presence of fractalkine after arterial injury and the localization of our fractalkine-targeted nanofiber to the site of injury and serve as the foundation to develop this technology further.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference26 articles.

1. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease

2. Reduction of atherosclerosis in mice by inhibition of CD40 signalling

3. In-Stent Restenosis: Contributions of Inflammatory Responses and Arterial Injury to Neointimal Hyperplasia

4. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium;Clowes;Lab. Investig.,1983

5. Kinetics of cellular proliferation after arterial injury. III. Endothelial and smooth muscle growth in chronically denuded vessels;Clowes;Lab. Investig.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3